

Multi-scale connectivity An integrated methodology to unravel the exposome

Denis A. Sarigiannis^{1,2}

¹Department of Chemical Engineering, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece ²Centre for Research and Technology Hellas (CE.R.T.H.), Thessaloniki, 57001, Greece

http://www.enve-lab.eu

HERCULES Seminar Emory University, Atlanta, GA, USA 20 November 2014

The **HEALS** paradigm

External Exposure workflow

THE STATE OF THE S

Department of Chemical Engineering School of Engineering Aristotle University of Thessaloniki

Exposure biology workflow

Rendering high dimension biology operational

Environment Wide Association Studies (EWAS)

Directed Acyclic graphs (DAGs)

Bayesian Inference

Linkage disequilibrium

Patel et al. (2011). Canonical Correlation of Biomarkers of Environmental

Population studies: Health outcomes

- Already existing cohort data
 - Allergy and asthma link with particulate matter (PM) and biologicals
 - Neurodevelopmental and neurodegenerative disorders link with metals/metalloids and pesticides (incl. endocrine disruptors)
 - Obesity and childhood diabetes link with endocrine disruptors
- Pilot European Exposure and Health Examination Survey (EXHES)
 - Mother-Father-Children longitudinal and nested case-control study
 - Two phases foreseen:
 - Phase 1:
 - 200 twins, 200 matched singletons, 500 unselected singletons, parents
 - Recruitment within 18 months follow up for 3 years
 - o 10 countries
 - Phase 2:
 - Nested case-control
 - 140 twins, 70 singletons, 140 mothers and fathers
 - * Ethnics minorities included and targeted to the extent possible

The internal exposome

HEALS-omics platform

Transcriptomics

- Human data
- In vitro data for mechanistic hypotheses anchoring

Metabolomics

- Coupled use of NMR, UPLC-MS, MS-MS TOF, GC-MS
- Key xenobiotics: metals, dioxins, phthalates, PCBs, PAHs
- Adductomics of oxidation- and alkylation-induced damage
 - Adducts of electrophiles with DNA, Hb, Alb, Glutathione
 - Oxidative and nitrogen species stress markers (antioxidant capacity, isoprostanes, uric acid, cytokines) in blood
 - UPLC-MS/MS, fixed-step selected reaction monitoring (FS-SRM) for protein adducts
- SNP profiling (UK Axiom Biobank array with targeted add-ons) and functional analysis of repair proteins (repair of oxidative DNA damage)
- Genome-wide DNA methylation profiling
 - Bisulfite sequencing
 - Characterisation of methylation of selected CpG target sites
 - Aim: to identify differences between epigenetically influenced and independent SNPs

Concept of generic lifetime PBBK model

- Detailed description of compartments and tissue composition
- Lifetime evolving parameters
 - Organ volumes
 - Blood flows
 - Age-dependent clearance
- Mother Fetus interaction
- Breast feeding

Expanding the chemical space – use of QSARs

According to Abraham's solvation equation, a biological property SP is described by the following equation

 $\log SP = c + r \cdot R_2 + s \cdot \pi_2^{\mathrm{H}} + a \cdot \Sigma \alpha_2^{\mathrm{H}} + b \cdot \Sigma \beta_2^{\mathrm{H}} + v \cdot \log V_x$

Where:

 R_2 is an excess molar refraction that can be determined simply from a knowledge of the compound refractive index

 $\boldsymbol{\pi_2}^H$ is the compound dipolarity/polarizability

 $\Sigma \alpha_2^H$ is the solute effective or summation hydrogen-bond acidity

 $\Sigma \beta_2^H$ is the solute effective or summation hydrogen-bond basicity

 $V_{\mathbf{x}}$ is the McGowan characteristic volume

Coupling biokinetics and metabolic regulation

HBM data assimilation

Optimal methodological scheme for exposure reconstruction

BridgeDb for multi-omics pathway mapping

Metabolite Identifiers

KEGG

HMDB

ChEBI

CAS

Protein Identifiers

Swiss-Prot

UniProt

UniProt/TrEMBL

Gene Identifiers

Entrez Gene, GenBank, Ensembl

EC #, RefSeq, UniGene, HUGO

HGNC, EMBL

Disease programming through life

The external exposome

EDMS – Data retrieval through map representation (1)

EDMS – Data retrieval through map representation (2)

External exposure advances

An individual's space-time activity model

Agent based modelling

Sensors for exposure assessment

A case on the HEALS paradigm: Co-exposure to VOCs

A case on the HEALS paradigm: Co-exposure to VOCs

Department of Chemical Engineering School of Engineering Aristotle University of Thessaloniki

Environmental

sensors

Ubiquitous

personal sensors

Overall wear - sync - export

"Intelligent" location tracking

23

Statistical Method: Predicting location based on temp and UV logs through an Artificial Neural Network

5 input nodes (4 numerical and 1 categorical)
12 hidden nodes (found to yield the best results among several combinations)
3 output nodes (corresponding to the 3 different classes)
Data from 5 days were used for training the ANN model
Data from 2 days were used as an independent dataset to validate the ANN model

Predicting location

Department of Chemical Engineering School of Engineering Aristotle University of Thessaloniki

based on temp and UV logs through ANN

Transition from indoors to outdoors is captured

Identifying activity patterns Based on Agent Based Modelling

Department of Chemical Engineering School of Engineering Aristotle University of Thessaloniki

Multi-omics responses and associations

Identification of differentially

expressed proteins

Transcriptomics responses to chemical BTEX mixtures

Extracellular perturbations on metabolic states

Identification of AML metabolomic fingerprint

Toxic metabolites

Department of Chemical Engineering School of Engineering Aristotle University of Thessaloniki

in bone marrow concentration modulation

Estimated lifetime leukemia risk

Conclusions

- Integrated use of existing environmental and biomonitoring data
- Improved assessment of the external exposome
 - Environmental data fusion and Agent-Based Models
 - Mobile phone apps
 - Environmental sensor-webs
 - Micro-sensors
 - Satellite remote sensing
- Linking external and internal exposome
 - Integrated use of –omics and chemical biomarker data
 - Take into account the temporal dimension
- Advanced tools for environmental and biological data analysis
 - PBBK modeling for internal dose estimation and exposure reconstruction
 - Coupling PBBK models with gene regulation models
- Novel bioinformatics strategies for biomarker prediction
 - Meta-modeling for biomarker fusion
- Environment-wide association studies
 - Linkage disequilibrium
 - Use of advanced statistical tools: DAG, Bayesian inference
- Environics
 - study of a wide array of environmental factors in relation to health and biology

Thank you for your kind attention

www.enve-lab.eu

A connectivity perspective to environmental health

HERCULES Seminar Emory University, Atlanta, GA, USA 20 November 2014